(O NEEEDNSTVENNOSTI STATSIONARNOGO reshinsila sistemy uravneril teoril gormanila)

PMM Vol. 30, № 2, 1966, pp. 368-374
R.D. BACHELIS and V.G. MELAMED
(Moscow)
(Received February 23, 1965)

As is known, the one-dimensional combustion process of a gas mixture is described by a nonlinear system of partial ilfferential equations of the form

$$
\begin{array}{cl}
\frac{\partial U}{\partial l}=\frac{\partial}{U_{x}}\left[x(U) \frac{\partial U}{\partial x}\right]+F(U) C, & \frac{\partial C}{\partial t}=\frac{\partial}{\partial x}\left[\begin{array}{ll}
x_{1} & \left.U) \frac{\partial C}{\partial x}\right]-F(U) C \\
F(U) \equiv 0, \quad u \in\left[0, U_{0}\right], & F(U)>0, \quad U>U_{0}
\end{array}\right. \tag{0.1}
\end{array}
$$

Here U is the mixture temperature, $C \geq 0$ the concentration of active substance, $F(U) C$ the reaction rate, $a(U)>0$ the coefficient of heat conduction, $a_{1}(U)>0$ the coefficient of diffusion.

Let us seek the solution of a special kind of system, called stationary

$$
l^{r}=u(y), \quad C=e(y), \quad y=x+\lambda t, \quad \lambda=\text { const }>0
$$

which satisfies the conditions

$$
u(-\infty)<u(y)<u(\infty), \quad c(-\infty)>c(y)>c(\infty)
$$

The system (0.1) hence becomes

$$
\begin{equation*}
\lambda \frac{d u}{d y}=\frac{d}{d y}\left[\alpha(u) \frac{d u}{d y}\right]+F(u) c, \quad \lambda \frac{d c}{d y}=\frac{d}{d y}\left[\alpha_{1}(u) \frac{d c}{d y}\right]-F(u) c \tag{0.2}
\end{equation*}
$$

It is easy to prove that $u^{\prime \prime}(y)>0$ for all y. Let us prescribe the following conditions for the solution of the system (0.2):

$$
u(-\infty)=0, \quad c(-\infty)=c_{0}>0, \quad c(\infty)=0
$$

It follows from the existence of $u\binom{+\infty}{\infty}$ and $o(\pm \infty)$ that $d^{\prime}(\pm \infty)=u^{+}(\pm \infty)$ - O if the latter exist. We have from (0.2)

$$
\lambda\left[c(y)+u(y)-c_{0}-u(-\infty)\right]=\alpha(u) d u / d y+\alpha_{1}(u) d c / d y
$$

Hence, in turn

$$
c(-\infty)+u(-\infty)=c(\infty)+u(\infty), \quad \text { for } \quad u(\infty)=u_{+}=c
$$

Taking into account that $u^{\prime}>0$, we take u as independent variable. Let us introduce the notation

$$
\begin{gather*}
v(u)=\alpha(u) d u / d y>0, \quad \alpha(u) F(u)=f(u) \\
f(u)>0, \quad u>u_{0}, \quad f(u) \equiv 0, \quad u \in\left[0, u_{0}\right], \quad \alpha(u) / \alpha_{1}(u)=\beta(u)>0 \tag{0.3}
\end{gather*}
$$

Consequently, the system (0.2) becomes

$$
\begin{equation*}
v=\lambda-\frac{f(u) c}{v}, \quad c=\beta(u)\left[\frac{\lambda}{v}(c+u-u)-1\right] \tag{0.4}
\end{equation*}
$$

with the conditions $v(0)=0, v\left(u_{+}\right)=o\left(u_{+}\right)=0$.
since $f(u) \equiv 0, u \in\left[0, u_{0}\right]$, the latter is then equivalent to

$$
\begin{equation*}
v\left(u_{0}\right)=\lambda u_{0} \tag{0.5}
\end{equation*}
$$

It is required to determine $O(u)$ and $v(u)$ in $\left[0, u_{4}\right]$ (thereby $u(v)$ and $c(y)$ will be determined to the accuracy of a paraliel transfer along the y axis as well as the constant λ

The existence of a solution of the system (0.4), (0.5) has been proved in [2] in the particular case of $B(u)=$ const. It has also been proved that the solution of this system is unique for $B(u)=$ const $>$. The question of u niqueness in the general case therefore remains open. Another particular case with $\beta \equiv 1$ reduces the system (0.4), (0.5) to the single equation considered In [1] (where the existence and uniqueness of the solution was proved), and also in [3 and 4].

In this connection, the assumption existed that the system (0.4), (0.5) has a unique solution for any $f(u)$ and $\beta(u)$ satisfying the constraints (0.3) By constructing a contradictory example, it is proved herein that uniqueness even may not hold despite compliance with (0.3).

Let us assume that for some combination of values $t_{0} u_{4} u_{+}$and the functions $f(u), \theta(u)$ the system $(0.4),(0.5)$ has two solutions $v_{1}(u), \sigma_{1}(u)(i-1,2)$. Let us introduce the notation

$$
\begin{align*}
& a(u)=c_{2}(u) / c_{1}(u) \tag{0.6}\\
& b(u)=v_{2}(u) / v_{1}(u) \tag{0.7}
\end{align*}
$$

for $u \in\left(u_{0}, u_{+}\right)$. The values of $a\left(u_{+}\right)$and $b\left(u_{+}\right)$are determined by a passage to the 11 mit .

Let us find $f(u), \beta(u)$ and u_{+}in terms of $u_{0}, \lambda_{1}, \lambda_{a}, a(u), b(u)$. To do this let us first form a system of differential equations to determine v_{1} (u), u_{4} and $o_{1}(u)$ in terms of $u_{0}, \lambda_{1}, \lambda_{2}, a(u), b(u)$. To do this let us first form a system of differential equations to determine $v_{1}(u)$, u_{+}and $o_{1}(u)$ in terms of $u_{0}, \lambda_{1}, \lambda_{3}, a(u)$ and $b(u)$. After transformation we have from $(0.6$) and (0.7)

$$
\begin{equation*}
c_{1}^{\prime}=\frac{a^{\prime} c_{1}\left[\lambda_{1}\left(c_{1}+u-u_{+}\right)-p_{1}\right] b}{\left(\lambda_{2}-\lambda_{1} b\right) a c_{1}+\left(\lambda_{2}-\lambda_{1} a b\right)\left(u-u_{+}\right)+(a-1) b v_{1}} \tag{0.8}
\end{equation*}
$$

As will be proved below, (0.7) has singular points, which preciudes assignment of the initial condition. From (0.6) and (0.5) follows

$$
b(u)=\lambda_{2} / \lambda_{1}, u \in\left[0, u_{0}\right]
$$

I vidently the function $b(u)$ is continuously differential in ($0, u_{+}$). Therefore, $L^{\prime}\left(u_{0}\right)=0$. We have $b(u)>0$ in $\left[0, u_{+}\right)$. Substituting both the assumed solutions into (0.4), eliminating $f(u)$ and utilizing (0.6), we obtain

$$
\begin{equation*}
\frac{\left(\lambda_{2}-v_{2}^{\prime}\right) v_{2}}{\left(\lambda_{1}-v_{1}^{\prime}\right) v_{1}}=\frac{c_{2}}{c_{1}}=a(u), \quad u \in\left(u_{0}, u_{+}\right) \tag{0.9}
\end{equation*}
$$

Hence, according to (0.6) we obtain an equation to determine $v_{1}(u)$

$$
\begin{equation*}
v_{1}^{\prime}=\frac{b b^{\prime}}{a-b^{2}} v_{1}+\frac{a \lambda_{1}-b \lambda_{2}}{a-b^{2}}, \quad v_{1}\left(u_{0}\right)=\lambda_{1} u_{0} \quad \text { for } \quad v_{1}^{\prime}-\lambda_{1}=\frac{b\left(b^{\prime} v_{1}-\lambda_{1}+b \lambda_{1}\right)}{a-b^{2}} \tag{0.10}
\end{equation*}
$$

Evidently (0.8) may be solved independently of (0.7). From (0.4), (0.3) and also the constraints imposed on $o(u)$ and $v(u)$ it follows that $v_{2}-\lambda_{1}$ <0 that 1s

$$
\begin{equation*}
\frac{b^{\prime} v_{1}-\lambda_{2}+b \lambda_{1}}{a-b^{2}}<0 \tag{0.11}
\end{equation*}
$$

Now let $\lambda_{1}, \lambda_{2}, a(u), b(u), u \in\left[u_{0}, \infty\right)$ be assigned in advance, but not obtained as a result of solving $(0.4),(0.5)$. Moreover, as before, us is prescribed. Solving (0.7) (0.8), we can obtain $v_{2}(u), u_{t}, o_{1}(u)$ and $f(u)$ and $\beta(u)$ in terms of them. The following conditions should hence be satisfied:

1) $v_{1}(u)$ should vanish at least for $u>u_{0}$. The point of intersection with the horizontal axis nearest to u_{0} will be taken as u_{+}, after which the segment ($\left.u_{+},-\right)$is excluded from the considerations.
2) At least one continuous solution of (0.8), which vanishes at $u=u_{+}$, should exist in [u_{0}, u_{+}].
3) The $f(u)$ and $\beta(u)$ obtained should be continuous, differentiable, and satisfy the conditions $f\left(u_{0}\right)=0, f(u)>0$ for $u \in\left(u_{0}, u_{+}\right]$.

As regards the semi-interval $\left(0, w_{0}\right), f(u) \equiv 0$ has already been determined therein; any positive function dirferentiable in [$0, w_{0}$) as well as the juncture point $u=v_{0}$ may be taken as $B(u)$.

The functions $a(u)$ and $b(u)$ are constructed in Section $1 ; v_{1}(u)$ is determined in Section 2 and the existence of u_{*} is proved; in Section 3 it is proved that $v_{i}^{\prime}-\lambda_{1}<0$ in (u_{0}, u_{4}], which is necessary to the proof for f $\left\{(u)\right.$ being positive in this semi-interval; $o_{2}(u)$ is determined in Section 4. The equation (0.7) has twn singular points, one of which is ($\mu_{+}, 0$), in the $o_{1} u$ plane. The existence of a single integral line passing through both singular points is proved. It is proved that $a_{i}^{\prime}(u)<0$ points of the mentioned ine. This is used to prove that $B(u)$ is positive.
if tet us establish the sufficient conditions which should be imposed on $f(u)$ and $g(u)$ in order that the listed requirements be satisfied. Let us take an arbitrary $u_{\}} \geqslant u_{0}$ and let us construct any twice continuously differentiable function δf_{u}) in $\left[u_{0}, u_{1}\right]$ which will satisfy the following conditions:

$$
\begin{gather*}
b\left(u_{0}\right)=\lambda_{2} / \lambda_{1}, \quad b^{\prime}\left(u_{0}+0\right)=0, \quad b^{\prime}(u)<0, \quad u \in\left(u_{0}, u_{1}\right) \tag{1.1}\\
b^{\prime}\left(u_{1}-0\right)=0, \quad b\left(u_{1}\right) \in\left(0, \lambda_{1} / \lambda_{2}\right)
\end{gather*}
$$

Further, let us select an arbitrary $B \in\left(\lambda_{1} / \lambda_{2}, 1\right)$ and let us construct any twice continuousiy differentiable function $b(u)$ in ($\left.\mu_{1}, \infty\right)$, which will satisfy the conditions

$$
\begin{gather*}
b\left(u_{1}+0\right)=b\left(u_{1}\right), \quad b^{\prime}\left(u_{1}+0\right)=0, \quad b^{\prime \prime}\left(u_{1}+0\right)=b^{\prime \prime}\left(u_{1}-0\right), \quad \lim _{u \rightarrow \infty} b(u)=B \\
0<b^{\prime}(u)<\frac{\lambda_{2}-\lambda_{1}}{\lambda_{1} u}, \quad u \in\left(u_{1}, \infty\right) \tag{1.2}
\end{gather*}
$$

Evidently, a function $b(u)$ satisfying the last inequality and at $u \rightarrow \infty$ tending to any value greater than $b\left(u_{3}\right)$. (in particular to the selected B), may be chosen. The possibility of satisfying the remaining conditions is ev1 dent.

Let us also construct some twice continuously differentiable runction $a(u)$ in $\left[u_{0}, u_{2}\right]$, which will satisfy the following conditions

$$
\begin{gather*}
a\left(u_{0}\right) \in\left(\frac{\lambda_{2}^{2}}{\lambda_{1}^{2}}, \quad \frac{\lambda_{2}}{\lambda_{1} b\left(u_{1}\right)}\right), \quad a\left(u_{1}\right) \in\left(a\left(u_{0}\right), \frac{\lambda_{2}}{\lambda_{1} b\left(u_{1}\right)}\right), \quad a^{\prime}(u)>0 \tag{1.3}\\
u \in\left[u_{0}, u_{1}\right), \quad a^{\prime}\left(u_{1}-0\right)=0, \quad a^{\prime \prime}\left(u_{1}-0\right)<0
\end{gather*}
$$

Let us chose an arbitrary

$$
A \in\left(\max \left\{1, a\left(u_{1}\right) b\left(u_{1}\right) B\right\}, B \lambda_{2} / \lambda_{1}\right)
$$

Let us construct some twice continuously differentiable function $a(u)$ in $\left(u_{1}, \infty\right)$, which will satisfy the following conditions

$$
\begin{array}{r}
a\left(u_{1}+0\right)=a\left(u_{1}\right), \quad a^{\prime}\left(u_{1}+0\right)=0, \quad a^{\prime \prime}\left(u_{1}+0\right)=a^{\prime \prime}\left(u_{1}-0\right) \\
e^{\prime}(u)<0, \quad u \in\left(u_{1}, \infty\right), \quad \lim _{u \rightarrow \infty} a(u)=A, \quad a(u)<\frac{A}{B b(u)} \quad u \in\left[u_{1}, \infty\right) \tag{1.4}
\end{array}
$$

The existence of functions satisfying the first four conditions of (1.4) is obvious. Moreover, it follows from the above that:

$$
A<A / B<\lambda_{2}: \lambda_{1}<\lambda_{2}^{2} / \lambda_{1}^{2}<a\left(u_{1}\right)
$$

Hence, the existence of functions satisfying the fifth condition of (1.4) results. The possibility of also satisfying the last condition of (1.4) follows from the fact that the function $A / B^{b}(u)$ decreases monotonously as u changes from u_{1} to ∞ respectively

$$
\text { from } \frac{A}{B b\left(u_{1}\right)}>a\left(u_{1}\right) \quad \text { to } \frac{A}{B b(\infty)}=\frac{A}{B^{2}}>A=a(\infty)
$$

It follows from the construction of the functions $a(u)$ and $b(u)$ that both are twice continuously differentiable in $\left[u_{0}, \infty\right)$, and particularly at the point u_{1}, where the matching has been made.

Let us prove the existence of an $n>0$ auch that the inequality

$$
\begin{equation*}
a(u)-b^{2}(u) \geqslant h \tag{1.5}
\end{equation*}
$$

18 valid for the constructed functions $a(u)$ and $b(u)$ in $\left[u_{0}, \infty\right)$
Let $u \in\left[u_{0}, u_{1}\right]$. Then it follows from (1.1) and (1.3) that:

$$
a(u)-b^{2}(u) \geqslant a\left(u_{0}\right)-b^{2}\left(u_{0}\right)=a\left(u_{0}\right)-\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{2}>0
$$

Now ${ }_{f 0}$ let $u \in\left(u_{1}, \infty\right)$. Then it follows by virtue of (1,2) and (1.4) that $a(u)-b_{0}(u)>A-B^{a}>0$. Putting $h=\min \left\{a\left(u_{0}\right)-\left(\lambda_{a} / \lambda_{1}\right)^{2}, A-B^{2}\right\}$, we ob$\operatorname{tain}(1.5)$.

Moreover, let us prove the existence of an $H>0$ such that for all $u \in\left[u_{0}, \infty\right)$

$$
\begin{equation*}
a(u)-b^{2}(u) \leqslant H \tag{1.6}
\end{equation*}
$$

In fact, the function $a(u)$ takes on 1 ts maximum value at $u=u_{i}$, and $b(u)$ its minimum, Therefore, $a\left(u_{4}\right)-b^{2}(u) \leq a\left(t_{4}\right)-b^{2}\left(u_{1}\right)$.

Putting $H=a\left(u_{3}\right)-b^{2}\left(u_{1}\right)$, we obtain $(i, 6)$. Let us also note that

$$
\begin{equation*}
b(u)<\lambda_{2} / \lambda_{1}, \quad u>u_{0}, \quad a(u)>1, \quad u \geqslant u_{0}, \quad b(u)<1, \quad u \geqslant u_{1} \tag{1.7}
\end{equation*}
$$

2. By constructing $a(u)$ and $b(u), u \in\left[u_{0}, \infty\right)$, in this manner, we determine $v_{1}(u)$ from (0.9) under the initial condition $v_{1}\left(u_{0}\right)-\lambda_{1} u_{0}$

$$
v_{1}(u)=X(u) Y(y) \quad\left(X(u)=\exp \int_{u_{0}}^{u} \frac{b b^{\prime}}{a-b^{2}} d s, Y(u)=\int_{u_{0}}^{u_{u}} \frac{\lambda_{1} a-\lambda_{2} b}{\left(a-b^{2}\right) X(s)} d s+\lambda_{1} u_{0}\right)
$$

Let us prove the existence of a $p>0$ such that for all $u \in\left[u_{0}, \infty\right)$

$$
\begin{equation*}
X(u) \leqslant p \tag{2.2}
\end{equation*}
$$

Let $u \in\left[u_{0}, u_{1}\right]$. By virtue of (1.1) and (1.5) we have $X^{\prime}(u) \leq 0$. Hence, $x(u) \leq x\left(u_{0}\right)$. Now, let $u \in\left(u_{1}, \infty\right)$ Then

$$
\begin{gathered}
X(u)=X\left(u_{1}\right) \exp \int_{u_{1}}^{u} \frac{b b^{\prime}}{a-b^{2}} d s \leqslant X\left(u_{1}\right) \exp \frac{1}{2 h}\left[b^{2}(u)-b^{2}\left(u_{1}\right)\right]< \\
<X\left(u_{1}\right) \exp \frac{1}{2 h}\left[B^{2}-b^{2}\left(u_{1}\right)\right]
\end{gathered}
$$

Putting

$$
p=\max \left\{X\left(u_{0}\right), X\left(u_{1}\right) \exp \frac{1}{2 h}\left[B^{2}-b^{2}\left(u_{0}\right)\right]\right\}
$$

we obtain (2.2). Taking into account that $X^{\prime}(u)>0$ for $u \geqslant u_{1}$, we obtain the existence of $x(\dot{\infty})$. Let us note that since we have $\lambda_{2} a-\lambda_{2} b u_{1} i_{2} a\left(u_{0}\right)-\lambda_{2} b$ $\left(u_{0}\right)>0$ for $u \in\left[u_{0}, u_{1}\right]$, then $v_{1}(u)>0$ on this segment.

Let us now prove the existence of a $u_{+}>u_{1}$ such that $v_{+}=0, v(u)>0$, $u<u_{+}$

Let us consider $r^{\prime}(u)$ in $\left(u_{1}, \infty\right)$. Evidently $Y^{\prime}\left(u_{1}\right)>0$. As u increases between u_{1} and ∞ the function $\lambda_{1} a-\lambda_{2} b$ will decrease monotonously by virtue of the above, and

$$
\lim _{u \rightarrow \infty}\left(\lambda_{1} a-\lambda_{2} b\right)=\lambda_{1} A-\lambda_{2} B<0
$$

Hence, $r^{\prime}(u)$ changes sign at some point $u=u_{2}>u_{1}$, and the function $Y(u)$ will decrease monotonously for $u>u_{0}$. It can not emerge beyond the horizontal asymptote since

$$
\lim _{u \rightarrow \infty} Y^{\prime}(u)=\frac{\lambda_{1} A-\lambda_{2} B}{\left(A-B^{2}\right) X(\infty)}<0
$$

Hence, the existence of the desired point u_{+}has been established.
Let us note that $\lambda_{1} a\left(u_{*}\right)-\lambda_{3} \partial\left(u_{*}\right)<0$ has been proved in passing. We therefore have $v^{\prime}\left(u_{+}\right)<0$ from (0.8). We shall carry out all the subsequent disscussion for just $u \leq u_{*}$.
3. Let us prove that

$$
\begin{equation*}
v_{1}^{\prime}-\lambda_{1}<0, \quad u \in\left(u_{0}, u_{+}\right) \tag{3.1}
\end{equation*}
$$

Taking account of (1.1), (1.5) and (1.7), compliance with (3.1) in ($\left.u_{0}, u_{1}\right]$ follows from (0.10). By virtue of (0.5) we have

$$
r_{1}(u)<\lambda_{1} u, \quad u \in\left(u_{0}, u_{1}\right]
$$

Now, let us prove that $v_{1}(u)<\lambda_{1} u$ also in (u_{1}, u_{4}]. Let us assume the opposite, 1.e. a $u=u_{2} \in\left(u_{1}, u_{+}\right\rfloor$is found such that $v_{1}\left(u_{2}\right)=\lambda_{1} u_{2}$.

If the mentioned point is not unique, then u_{a} is taken to be the closest to u_{1}. Then, according to the Lagrange theorem, a $u_{3} \in\left(u_{1}, u_{2}\right)$ is found suich that

$$
v_{1}^{\prime}\left(u_{3}\right)=\frac{\lambda_{1} u_{2}-v_{1}\left(u_{1}\right)}{u_{2}-u_{1}}>\lambda_{1}
$$

On the other hand, since $v_{1}\left(u_{3}\right)<\lambda_{1} u_{3}$, then taking account of (2.2) and (0.9) we will have

$$
v_{1}^{\prime}\left(u_{3}\right)-\lambda_{1}=\frac{b\left(b^{\prime} v_{1}-\lambda_{2}+b \lambda_{1}\right)}{a-b^{2}}<\frac{\left(v_{1} / \lambda_{1} u-1\right)\left(\lambda_{2}-\lambda_{1} b\right) b}{a-b^{2}}<0
$$

which is impossible. Now, utilizing (1.2) we obtain

$$
b^{\prime} v_{1}-\lambda_{2}+b \lambda_{1}<b^{\prime} \lambda_{1} u-\lambda_{2}+b \lambda_{1}<0
$$

Hence, according to (0.9) we have

$$
v_{1}^{\prime}-\lambda_{1}<0, \quad u \in\left(u_{1}, u_{+}\right)
$$

Therefore, (3.1) has been proved.
4. Having determined the function $v_{f}(\mu)$ on $\left[u_{0}, u_{+}\right]$in such a manner, and $v_{s}(u)$ thereby (since $\delta(u)$ is known), let us give the determination of $c_{1}(u)$. Let us consider (0.7) in the domain s (see Fig.1)

$$
u \in\left[u_{0,}, u_{+}\right], c_{1} \in[0, L(u)], L(u)=v_{1} / \lambda_{1}+u_{+}-u
$$

By virtue of the proved properties of the function $v_{1}(u)$, we have

$$
\begin{equation*}
L^{\prime}\left(u_{n}\right)=0, \quad L(u)<0, \quad u \in\left(u_{t}, u_{+} l\right. \tag{4.1}
\end{equation*}
$$

It is also evident that

$$
L(u)>0, \quad u \in\left[u_{0}, u_{+}\right), L\left(u_{+}\right)=0
$$

Let us rewrite (0.8) as

$$
\begin{align*}
c_{1}^{\prime} & =\frac{a^{\prime} \varphi\left(u, c_{1}\right)}{\psi\left(u, c_{1}\right)}, \quad \varphi\left(u, c_{1}\right)=c_{1}\left[\lambda_{1}\left(c_{1}+u-u_{+}\right)-v_{1}\right] v_{2} \tag{4.2}\\
\psi\left(u, c_{1}\right) & =\left(\lambda_{2} v_{1}-\lambda_{1} v_{2}\right) a c_{1}+\left(\lambda_{2} v_{1}-a \lambda_{1} v_{2}\right)\left(u--u_{+}\right)+(a-1) v_{1} v_{2}
\end{align*}
$$

Evidently we have $\varphi\left(u, o_{1}\right)=0$ on the upper $o_{1}=L(u)$ and lower $c_{2}=0$ boundaries of the domain E At inner points and in the interval $u=u_{0}$, $0<0_{2}<L\left(u_{0}\right)$ we have $\varphi\left(u, o_{2}\right)<0$ Let us consider the behavior of in the domain E; After transformatirns, we have on the upper boundary according to (1.7) and (1.1)

$$
\psi[u, L(u)]=\left(u_{+}-u\right) \lambda_{2} v_{1}(a-1)+v_{1}{ }^{2}\left(a \lambda_{2} / \lambda_{2}-b>0, \quad u \in\left[u_{0}, u_{+}\right)\right.
$$

After transformations we have on the lower boundary

$$
\psi(u, 0)=\left[\lambda_{1}\left(u_{+}-u\right)+v_{1}\right]\left[a(u) b(u)-\frac{\lambda_{2}\left(u-u_{+}\right)-v_{2}}{\lambda_{1}\left(u-u_{+}\right)-v_{1}}\right] v_{1}
$$

According to the Cauchy theorem, a $u^{*} \in\left(u, u_{+}\right)$may be found such that

$$
\frac{\lambda_{1}\left(u-u_{+}\right)-v_{2}(u)}{\lambda_{1}} \frac{\left(u-u_{+}\right)-v_{1}(u)}{(u)}=\frac{\lambda_{2}-v_{2}^{\prime}\left(u^{*}\right)}{\lambda_{1}-v_{1}^{\prime}\left(u^{*}\right)}=\frac{a\left(u^{*}\right)}{b\left(u^{*}\right)}
$$

Hence

$$
\psi(u, 0)=\left[\lambda_{1}\left(u_{+}-u\right)+v_{1}\right]\left[a(u) b(u)-\frac{a\left(u^{*}\right)}{b\left(u^{*}\right)}\right] v_{1}
$$

Now, let $u \in\left[u_{1}, u_{+}\right)$. Then according to (1.4) and (1.8)

$$
a(u) b(u)-\frac{a\left(u^{*}\right)}{b\left(u^{*}\right)}<a(u) b(u)-A / B<0
$$

Hence, we have $(u, 0)<0$ for $u \in\left[u_{1}, u_{+}\right)$
For any fixed value of u the function $\psi\left(u, o_{1}\right)$ depends ilnearly on o_{1} and has different signs of the upper and lower boundaries for $u \in\left(u_{1}, u_{+}\right)$.

Hence, line $o_{2}-K(u)$ is found on $\left[u_{1}, u_{+}\right)$within E auch that 0 for

Fig. 1 $c_{1}=K(u) \quad$ we have <0 for
$c_{1} \in[0, K(u))$ (the domain $\left.E_{1}\right\}$, and
 domain f_{q}): Evidentiy

$$
\lim _{u \rightarrow u_{+-0}} K(u)=0
$$

Becaube $a^{\prime}<0$ for $u \in\left(u_{1}, u_{f}\right)$ and $\varphi\left(u, o_{1}\right)<0$, we have $c_{1}<0$ within E_{1} from (4.2).

Analogousiy, we have $0_{1}{ }^{\prime}>0$ within fe. Let us consider the point $O\left[u_{1}, K\left(u_{1}\right)\right]$. Aocording to (4.2), this point is singular, sinoe $a^{\prime}=0$ and -0 there. We estabi1sh, by a method mentioned in [5], that the point 0 is a saddle point, and the slope of the separatrix has two nonzero values of different sign. Let us consider the separatrix ${ }^{0}{ }^{\circ}(u)$ issuing from the point 0 with a negative slope. Evidentiy $o_{1}{ }^{\circ}(u)$ will fall into the domain F_{1} upon motion to the right, and cannot intersect o ${ }_{1} 0$ in $\left(u_{1}, u_{+}\right)$because of the uniqueness theorem, nor ${ }^{o_{2}=} K(u)$ because $K^{\prime}(u)$ is finite, and the slope of the integral ines (0.8) is - ror $o_{1}-\pi(u)-0$. Therefore, $O_{1}^{\circ}(u)$ drops to the point $O_{2}\left(u_{+}, 0\right)$. The latter is also singular.

Let us prove that $o_{1}{ }^{0}\left(u_{+}\right)<0$. Let us consider the function of two varlables

$$
Z(u, m)=\frac{a^{\prime} b\left[\lambda_{1}(m+1)\left(u-u_{+}\right)-v_{1}\right]}{\left(\lambda_{2}-\lambda_{1} b\right) a m+\lambda_{2}-\lambda_{1} a b+(a-1) b v_{1}\left(u-u_{+}\right)^{-1}}
$$

Evidently

$$
\lim _{u \rightarrow u_{+}-0} Z(u, m)=0 \quad\left(v_{1}\left(u_{+}\right)=0\right)
$$

$$
\lim _{u \rightarrow u_{+}-0}\left[\lambda_{2}-\lambda_{1} a b+\frac{(a-1) b v_{1}}{u-u_{+}}\right]=\lambda_{2}-\lambda_{1} a\left(u_{+}\right) b\left(u_{+}\right)+\left[a\left(u_{+}\right)-1\right] b\left(u_{+}\right) v_{1}^{\prime}\left(u_{+}\right)=
$$

$$
=\frac{a\left(u_{+}\right)\left[1-b^{2}\left(u_{+}\right)\right]\left[\lambda_{2}-\lambda_{1} b\left(u_{+}\right)\right]}{a-b^{2}}>0
$$

where $v_{1}{ }^{\prime}\left(u_{+}\right)$from (0.9). Therefore, there exist a $\delta_{1}>0$ and $\delta_{2}>0$ such that

$$
\begin{equation*}
Z(u, m)<1 \text { for } u_{+}-\delta_{1}<u<u_{+} \text {and }-\delta_{2}<m<0 \tag{4.3}
\end{equation*}
$$

Let us chose an arbitrary value $m \in\left(-\min \left\{\delta_{2}, c_{1}{ }^{\circ}\left(u_{+}-\delta_{1}\right) / \delta_{1}\right\}, 0\right)$. It follows from the condition $m>-c_{1}{ }^{\bullet}\left(u_{+}-\delta_{1}\right) / \delta_{1}$ that

$$
c_{1}^{\circ}\left(u_{+}-\delta_{1}\right)>-m \delta_{1}
$$

Upon further motion to the right the line $c_{1}^{\circ}(u)$ cannot intersect a segment of the line $c_{2}=m\left(u-u_{+}\right)$in $\left(u_{+}-\delta_{2}, u_{+}\right)$. In fact, since $0>m>-\delta_{2}$, then (4.3) is satisfied. Multiplying (4.3) by m, we see that the intrinsic slope of the considered segment m is less than the slope of the intergral line at any of its points $m Z(u, m)$. Therefore

$$
c_{1}{ }^{\mathrm{c} \prime}\left(u_{+}\right) \leqslant m<0
$$

Q.E.D.

Finally, let us continue $c_{1}{ }^{\circ}(u)$ from the point O_{1} towards the left. Let the part of E not in E_{1} and E_{a} be denoted by E_{3} (Pig.1). Exactly as has been done in studying the domains E_{2} and E_{2}, we see that because of the change in sign of a^{\prime} when u goes through u_{1}, we have $c_{1}<0$ for

$$
c_{1} \in(\max \{0, K(u)\}, L(u))
$$

and we have $0_{1}^{\prime}>0$ for $c_{1} \in(0, K(u))$ for those u for which $K(u)>0$. The line $0^{\circ}(u)$ does not intersect $L(u)$ in E_{3} since the slope of the inte gral ines (0.7) is zero on $L(u)$, and $L^{\prime}(u)<0$ for $u>u_{0}$.

Let us prove that $c_{1}{ }^{\circ \prime}(u)<0$ for $u \in\left[u_{0}, u_{1}\right)$. By virtue of continuity, a $\delta>0$ is found such that we have $L(u)>K(u)>0$ for $u \in\left[u_{1}-\delta, u_{1}\right]$.

Evidently the line $o_{1}{ }^{\circ}(u)$ will turn out to be higher than $K(u)$ for $u \in\left[u_{1}-\delta, u_{1}\right)$.

There remains to prove that $0_{1} 0^{\prime}<0$ upon further motion to the left.
Let us assume the opposite. This means that at some point $u_{3} \in\left[u_{0}, u_{1}-8\right)$ either $o_{2}=0$ or $o_{1}=\infty$. Let u_{a} be the point closest to $u_{1}-\delta$ with the mentioned singularity. The case $0_{1}{ }^{\circ} m 0$ is impossible aince we have $0_{1}{ }^{\circ}$ (<0 on ($u_{3}, u_{1}-8$), from which $c_{1}{ }^{\circ}\left(u_{2}\right)>c_{1}{ }^{\circ}\left(u_{1}-\delta\right)>0$, while $o_{1}{ }^{\circ}\left(u_{2}\right)<$ $<L\left(u_{2}\right)$ and, therefore, we have $a^{\prime} \varphi\left[u_{2} ; c_{1}\left(u_{2}\right)\right] \neq 0$.

Let us prove that the case $0_{2}^{\circ}=$ is also impossible. Indeed, if
 Where $\left|X^{\prime}\left(u_{g}\right)\right|<\infty$ in $u_{0}=u_{0}$, then $K\left(u_{0}\right)=-\infty$ and $o_{1}\left(u_{0}\right)>0$. Therefore, no integral ine intersects the inne $0_{1}=K(u)$ in $\left[\mu_{0}, \omega_{1}\right)$ for right-to-ieft motion. Thus, the existence of the solution (0.8) $o_{1}=o_{1}^{\circ}(u)$ satisfying the following conditions:

$$
\begin{array}{cc}
c_{1}^{\circ}\left(u_{+}\right)=0, \quad c_{1}{ }^{\circ \prime}(u)<0, \quad u \in\left[u_{0}, u_{+}\right], \quad 0<c_{1}^{0}(u) \tag{4.4}\\
u \in\left[u_{0}, u_{+}\right), \quad c_{1}^{\circ}(u)<\frac{v_{1}}{\lambda_{1}}+u_{+}-u, \quad u \in\left\{u_{0,} u_{+}\right)
\end{array}
$$

is proved.
Subetituting $\lambda=\lambda_{1}, c=c_{1}{ }^{\circ}(u), c^{\prime}=c_{1}{ }^{\circ}(u), v=v_{1}(u)$ into (0.4), we find日 (u). It foliows from (4.4) that $\beta(u)>0$ for $u \in\left[u_{0}, u_{+}\right]_{\text {. Moreover, sub- }}$ stituting $v=v_{1}(u)$ and $v^{\prime} v_{1}^{\prime}(u)$ into (0.4) we obtain $f(u)$. Since

$$
v_{1}^{\prime}-\lambda_{1}<0, \quad c_{1}>0, \quad v_{1}>0, \quad u \in\left(u_{0}, u_{+}\right)
$$

we obtain $f(u)>0$ in the mentioned interval. Because of

$$
v_{1}^{\prime}\left(u_{+}\right)-\lambda_{1}<0, \quad c_{1}^{\circ}\left(u_{+}\right)=0, \quad c_{1}^{\circ \prime}\left(u_{+}\right)<0, \quad v_{1}\left(u_{+}\right)=0, \quad v_{1}^{\prime}\left(u_{+}\right)<0
$$

we obtain $f\left(u_{+}\right)>0$ from (0.4) by L'Hopital's rule. From $v_{1}^{\prime}\left(u_{0}\right)=\lambda_{1}$, $c_{1}\left(u_{0}\right)>0, v_{1}\left(u_{0}\right)>0$ we obtain $f\left(u_{0}\right)=0$. Let us complete determining the function $f(u)$ on $\left[0, u_{0}\right)$ by setting it identically equal to zero, and $\beta(u)$ also in an arbitrary way under the condition of it being positive and continous.

Therefore, a u_{4} has been found, and also $a, f(u)$ and $B(u)$ have been found in $\left[u_{q}, u_{+}\right]$satisfying the constraints (0.3), for which the system (0.4), (0.5) has at least two solutions

$$
\begin{gathered}
\lambda=\lambda_{1}, \quad v=r_{1}(u), \quad c=c_{1}^{0}(u) \\
\lambda=\lambda_{2}, \quad v=v_{2}(u)=b(u) v_{1}(u), \quad c=c_{2}(u)=a(u) c_{1}^{\circ}(u)
\end{gathered}
$$

BIBLIOGRAPHY

1. Zel'dovich, N.B., K teori1 rasprostraneniia plameni (On the theory of flame propagation). Zh.i1z.Knim., Vol.22, N*1, 1948.
2. Kanel', N.I., O statsionarnykh reshenilakh difa sistemy uravnenil teoril gorenila (On stationary solutions for the system of equations of combustion theory). Dokl.Akad.Nauk SSSR, Vol.149, Ne 2, 1963.
3. Barenblatt, G.I. and Zel'dovich, Ia.B., Ob ustoichivosti rasprostraneniia plameni (On the stability of flame propagation). PNM, Vol.21, N 6, 1957.
4. Gei'fand, I.M., Nekotorye zadachi teoril kvazilineinykh uravnenil (Some problems of the theory of quazi-linear equations). Usp.mat. Nauk, Vol.14, NO 2, 1959.
5. Stepanov, V.V., Kurs differentsial'nykh uravnenil (A Course on Differen-. tial Equations). Gostekh1zdat, 1945.
